Living in a disadvantaged neighborhood is associated with adverse clinical outcomes among breast cancer patients, but the underlying pathway is still unclear. Limited evidence has suggested that accelerated biological aging may play an important role. In this study, using a sub-sample of 906 women with newly diagnosed breast cancer at M.D. Anderson, we examined whether levels of selected markers of biological aging (e.g., allostatic load, telomere length, and global DNA methylation) were affected by neighborhood disadvantage. The Area Deprivation Index (ADI) was used to determine the neighborhood disadvantage. Based on the median ADI at the national level, the study population was divided into low and high ADI groups. Overall, breast cancer patients from the high ADI group were more likely to be younger and non-Hispanic Black than those from the low ADI group (P < 0.001, respectively). They also more likely to have higher grade and poorly differentiated breast tumors (P = 0.029 and 0.019, respectively). For the relationship with markers, compared to the low ADI group, high ADI group had higher median levels of allostatic load (P = 0.046) and lower median levels of global DNA methylation (P < 0.001). Compared to their counterparts, those from the high ADI group were 20% more likely to have increased allostatic load and 51% less likely to have increased levels of global DNA methylation. In summary, we observed that levels of allostatic load and global DNA methylation are influenced by neighborhood disadvantage among breast cancer patients.