This study aimed to enhance the understanding of the steroidogenic acute regulatory protein-related lipid transfer (START) domain in Vitis vinifera. A total of 23 members of the VvSTARD gene family were found, which could be divided into five groups. The analyses of the gene codon preference, selective pressure, and tandem replication events of the VvSTARD, AtSTARD, and OsSTARD genomes indicated that tandem replication events occured in grapes, Arabidopsis, and rice genomes. Eight lipid transporter proteins were found in the tertiary structure of the STARD gene family in grapes. The analysis of the expression profiles of the three species microarrays showed that the expression sites of the STARD gene and the response to abiotic stress in the same subgroup had similar characteristics. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the expression of the STARD gene family in grape leaves in response to different hormones and abiotic stresses, and the obtained results were the same as those predicted by the cis-elements and the expression profiles. Furthermore, 35S:STARD5:EGFP was successfully constructed to verify the subcellular prediction results, and the results showed that STARD5 was located in the nucleus. Through the identification of salt tolerance of transgenic tomato, STARD5 was found to regulate the salt stress of plants. Collectively, these data indicated that the VvSTARD gene family plays an important role in response to salt stress.