Puerarin is a natural flavonoid with significant anti-inflammatory effects. Recent studies have suggested that ferroptosis may involve puerarin countering inflammation. However, the mechanism of ferroptosis mediated by the anti-inflammatory process of puerarin has not been widely explored. Herein, puerarin at a concentration of 40 μM showed an anti-inflammatory effect on lipopolysaccharide (LPS)-induced macrophages RAW264.7. The analysis of network pharmacology indicated that 51 common targets were enriched in 136 pathways, and most of the pathways were associated with ferroptosis. Subsequently, the analysis of metabolomics obtained 61 differential metabolites that were enriched in 30 metabolic pathways. Furthermore, integrated network pharmacology and metabolomics revealed that puerarin exerted an excellent effect on anti-inflammatory in RAW264.7 via regulating ferroptosis-related arachidonic acid metabolism, tryptophan metabolism, and glutathione metabolism pathways, and metabolites such as 20-hydroxyeicosatetraenoic acid (20-HETE), serotonin, kynurenine, oxidized glutathione (GSSG), gamma-glutamylcysteine and cysteinylglycine were involved. In addition, the possible active binding sites of the potential targeted proteins such as acyl-CoA synthetase long-chain family member 4 (ACSL4), prostaglandin-endoperoxide synthase 2 (PTGS2), arachidonate 15-lipoxygenase (ALOX15) and glutathione peroxidase 4 (GPX4) with puerarin were further revealed by molecular docking. Thus, we suggested that ferroptosis mediated the anti-inflammatory effects of puerarin in macrophages RAW264.7 induced by LPS.