A series of drop tests was implemented in the present study in order to allow the reproduction of a single impact identical to the high frequency mechanical impact (HFMI) under monitored conditions in the laboratory. Therewith, characterization of the investigated materialÕs mechanical behavior by explicitly considering possible irregularities concerning the present deformation modes would be enabled. Main goal was the determination of the investigated materialÕs dynamic yield stress for various strain rates inside the spectrum of interest, so that the Cowper-Symonds viscous material model would be calibrated for the subsequent HFMI simulation. The values of the dynamic yield stress extracted by the present drop tests show good agreement with other experimental methods regarding the investigated material S355. The introduction of the calibrated material behavior on the present drop tests in the finite element (FE) analysis of HFMI led to reduced preciseness though, in comparison with the FE analysis, which considered high strain rate tensile tests found in literature. A series of conclusions was drawn from both the experimental and numerical investigations, confirming most of the initial expectations. Further work is proposed, in order to clarify an incompatibility met during the numerical investigations. Keywords FE analysis, high frequency mechanical impact, residual stresses, simulation, strain rate dependency This article is an invited submission to JMEP selected from presentations at the Symposium ''Joining and Related Technologies,'' belonging to the topic ''Processing'' at the European Congress and Exhibition on Advanced Materials and Processes (EUROMAT 2019), held September 1-5, 2019, in Stockholm, Sweden, and has been expanded from the original presentation.