Ultra-weak self-association can govern
the macroscopic solution
behavior of concentrated macromolecular solutions ranging from food
products to pharmaceutical formulations and the cytosol. For example,
it can promote dynamic assembly of multi-protein signaling complexes,
lead to intracellular liquid–liquid phase transitions, and
seed crystallization or pathological aggregates. Unfortunately, weak
self-association is technically extremely difficult to study, as it
requires very high protein concentrations where short intermolecular
distances cause strongly correlated particle motion. Additionally,
protein samples near their solubility limit in vitro frequently show some degree of polydispersity. Here we exploit the
strong mass-dependent separation of assemblies in the centrifugal
field to study ultra-weak binding, using a sedimentation velocity
technique that allows us to determine particle size distributions
while accounting for colloidal hydrodynamic interactions and thermodynamic
non-ideality (Chaturvedi, S. K.; et al. Nat. Commun.2018, 9, 4415; DOI: 10.1038/s41467-018-06902-x). We show that this approach, applied to self-associating proteins,
can reveal a time-average association state for rapidly reversible
self-associations from which the free energy of binding can be derived.
The method is label-free and allows studying mid-sized proteins at
millimolar protein concentrations in a wide range of solution conditions.
We examine the performance of this method with hen egg lysozyme as
a model system, reproducing its well-known ionic-strength-dependent
weak self-association. The application to chicken γS-crystallin
reveals weak monomer–dimer self-association with KD = 24 mM, corresponding to a standard free energy change
of approximately −9 kJ/mol, which is a large contribution to
the delicate balance of forces ensuring eye lens transparency.