In this paper, we are concerned with Clifford-valued cellular neural networks (CNNs) with discrete delays. Since Clifford algebra is a unital associative algebra and its multiplication is noncommutative, to overcome the difficulty of the noncommutativity of the multiplication of Clifford numbers, we first decompose the considered Clifford-valued neural network into 2m2n real-valued systems. Second, based on the Banach fixed point theorem, we establish the existence and uniqueness of almost periodic solutions of the considered neural networks. Then, by designing a novel state-feedback controller and constructing a proper Lyapunov function, we study the global asymptotic synchronization of the considered neural networks. Finally, a numerical example is presented to show the effectiveness and feasibility of our results.