Abstract-Aldosterone increases cation transport and contractility of vascular smooth muscle, but the specific transporter involved and how it is linked to smooth muscle tone is unknown. Because the Na-K-2Cl cotransporter (NKCC1) contributes to vascular smooth muscle contraction and is regulated by vasoactive compounds, we sought to determine whether this transporter is a target of aldosterone in rat aorta. Treatment of adrenalectomized rats with aldosterone for 7 days resulted in a 63% increase in NKCC1 activity as measured by bumetanide-sensitive efflux of 86 Rb ϩ . Treatment of normal aortas in culture with aldosterone for 3 and 7 days resulted in 29% and 47% increases in NKCC1 activity, respectively. Aldosterone had no acute effect on 86 Rb ϩ efflux. Stimulation of NKCC1 was blocked by spironolactone, a mineralocorticoid receptor antagonist, but not by RU38486, a glucocorticoid receptor antagonist. Aldosterone did not augment the stimulation of NKCC1 by phenylephrine and did not increase NKCC1 mRNA as determined by real-time polymerase chain reaction. We conclude that aldosterone regulates the Na-K-2Cl cotransporter in vascular smooth muscle through classic mineralocorticoid receptors but not through changes in the abundance of NKCC1 mRNA. This could account for the increase in Na ϩ , K ϩ , and Cl Ϫ fluxes previously observed in vascular smooth muscle from mineralocorticoid-treated animals and may contribute to increased vascular tone.