Reactions of phosphorus(v) compounds involving the mutual interconversion of tetra-and pentacoordinate species are discussed in a critical review emphasizing stereochemical implications of the reaction mechanism. This discussion includes the formation and decomposition of the stable oxyphosphoranes, the Michaelis-Arbusov, Perkov, and Wittig reactions, interconversions of phosphines and their oxides, and the nucleophilic displacements on phosphonium compounds. Reactions of phosphate esters and related compounds receive particular attention. All chemical arguments are derived by considering the effect of factors determining the relative stabilities of phosphorane derivatives, their rates of formation, decomposition and rearrangement by bond deformation or rupture and recombination processes, considerations which are uniformly applied on the basis of concepts developed in a preceding communication'']. It is shown that a comprehensive mechanistic interpretation of the foregoing reactions requires substantial addition to available conceptual foundations such that, in many cases, present concepts and mechanisms must be revised.