It is often claimed that tools are embodied by the user, but whether the brain actually repurposes its body-based computations to perform similar tasks with tools is not known. A fundamental body-based computation used by the somatosensory system is trilateration. Here, the location of touch on a limb is computed by integrating estimates of the distance between sensory input and its boundaries (e.g., elbow and wrist of the forearm). As evidence of this computational mechanism, tactile localization on a limb is most precise near its boundaries and lowest in the middle. If the brain repurposes trilateration to localize touch on a tool, we should observe this computational signature in behavior. In a large sample of participants, we indeed found that localizing touch on a tool produced the signature of trilateration, with highest precision close to the base and tip of the tool. A computational model of trilateration provided a good fit to the observed localization behavior. Importantly, model selection demonstrated that trilateration better explained each participant's behavior than an alternative model of localization. These results have important implications for how trilateration may be implemented by somatosensory neural populations. In sum, the present study suggests that tools are indeed embodied at a computational level, repurposing a fundamental spatial computation.