A new method is described to derive mixing-height time series directly from aerosol-layer height data available from a Vaisala CL51 ceilometer. As complete as possible mixing-height time series are calculated by avoiding outliers, filling data gaps by linear interpolation, and smoothing. In addition, large aerosol-layer heights at night that can be interpreted as residual layers are not assigned as mixing heights. The resulting mixing-height time series, converted to an appropriate data format, can be used as input for dispersion calculations. Two case examples demonstrate in detail how the method works. The mixing heights calculated using ceilometer data are compared with values determined from radiosounding data at Vienna by applying the parcel, Heffter, and Richardson methods. The results of the parcel method, obtained from radiosonde profiles at noon, show the best fit to the ceilometer-derived mixing heights. For midnight radiosoundings, larger deviations between mixing heights from the ceilometer and those deduced from the potential temperature profiles of the soundings are found. We use data from two Vaisala CL51 ceilometers, operating in the Vienna area at an urban and rural site, respectively, during an overlapping period of about 1 year. In addition to the case studies, the calculated mixing-height time series are also statistically evaluated and compared, demonstrating that the ceilometer-based mixing height follows an expected daily and seasonal course.