Earth's continental crust has grown and been recycled throughout geologic history along convergent plate margins. The main locus of continental crustal growth is in intra-oceanic and continental-margin arc systems in Archean time. In arc systems, oceanic lithosphere is subducted to the deeper mantle, and together with its overlying sedimentary sequence is in some cases off-scraped to form accretionary prisms. Fluids are released from the subducting slab to chemically react with the mantle wedge, forming mafic-ultramafic metasomatites, whose partial melting generates mafic melts that rise up to form arcs. In intraoceanic arcs, they produce dominantly basaltic lavas, with a mid-crust that includes variably-developed vertically-walled intermediate plutons and higher-level dikes and sills. In continental-margin arcs, different petrogenetic processes cause assimilation and fractionation of basaltic magmas, partial melting/reworking of juvenile basaltic rocks, and mixing of mantle-and crust-derived melts, so they produce andesitic calc-alkaline melts but still have a mid-crust dominated by vertically-walled felsic plutons, which form 3-D dome-and-basin structures, akin to those in some Archean terranes such as parts of the Pilbara and Zimbabwe cratons. Notably, the continental crust of Archean times is dominated by tonalite-trondhjemite-granodiorite (TTG) plutons, similar to that of the mid-crust of these arc systems, suggesting that early continental crust may have formed largely by the amalgamation of multiple arc systems. The patterns of magmatism, in terms of petrogenesis, rock types, duration of magmatic and accretionary events, and the spatial scales of deformation and magmatism have remained essentially the same throughout geological history, demonstrating that plate tectonic processes characterized by subduction and arc magmatism have been in operation at least as long as recorded by the preserved geologic record, since the Eoarchean. However, the early Earth was dominated by accretionary orogens and oceanic arcs, that gradually grew thicker through multiple accretion events to form early continental-margin arcs by 3.5-3.2 Ga, and accretionary orogens. Slab melting and warmer metamorphism was more common in Archean arc systems due to higher mantle temperatures. These early arcs were further amalgamated into large emergent continents by ~3.2-3.0 Ga, allowing large-scale processes such as lithospheric rifting and continental collisions, and the start of the supercontinent cycle. Further work should apply the null hypothesis, that plate tectonics explains the geologic record, to test for differences in the style of plate tectonics and magmatism through time, based on the fundamental difference in planetary heat production and the evolution of rotational dynamics of the Earth-Sun-Moon system.