Background: The gut microbiota participates in the metabolism of substances and energy, promotes the development and maturation of the immune system, forms the mucosal barrier, and protects the host from pathogen attacks. Although the pathogenesis of cholesterol gallstones is still not clear, studies have suggested that gut microbiota dysbiosis plays an important role in their formation. Methods: Microbial DNA from faeces of normal control patients and those of patients with calculi was subjected to 16S rRNA gene sequencing to detect gene expression changes in intestinal microbes. ELISA kits were used to measure free bile acids, secondary bile acids and coprostanol according to the manufacturer’s instructions. The relationship between flora and their metabolites was then analysed. Results: In the gallstone group, the diversity of intestinal bacteria and the abundances of certain phylogroups were significantly decreased (p<0.05), especially Firmicutes (p<0.05), the largest phylum represented by the gut microbiota. This study found an increase in free bile acids (p<0.001) and secondary bile acids (p<0.01) in the enterohepatic circulation. Bile salt hydrolase activity was not related to the abundances of BSH-active bacteria. 7a-dehydroxylating gut bacteria were significantly increased (p<0.01), whereas cholesterol-lowering bacteria were significantly reduced (p<0.05). The Ruminococcus gnavus group could be used as a biomarker to distinguish the gallstone group from the control group. Conclusion: Substantial changes in the intestinal flora of patients with gallstones were observed, which affect cholesterol and bile acid metabolism and can lead to gallstones. Keywords: Gut microbiota, Gallstone, Bile acid, BSH, 16S rRNA gene sequencing