Experimental data and computational models suggest that blockade of muscarinic cholinergic receptors impairs paired-associate learning and increases proactive interference (E. DeRosa & M. E. Hasselmo, 2000; M. E. Hasselmo & J. M. Bower, 1993). The results presented here provide evidence in humans supporting these hypotheses. Young healthy subjects first learned baseline word pairs (A-B) and, after a delay, learned additional overlapping (A-C) and nonoverlapping (D-E) word pairs. As predicted, when compared with subjects who received the active placebo glycopyrrolate (4 g/kg) and subjects who were not injected, those who received scopolamine (8 g/kg) showed (a) overall impairment in new word paired-associate learning, but no impairment in cued recall of previously learned associates; and (b) greater impairment in learning overlapping (A-C) compared with nonoverlapping (D-E) paired associates.Acetylcholine may play an important role in the encoding of new information. Numerous studies demonstrate that blockade of muscarinic acetylcholine receptors by systemic administration of the drug scopolamine interferes with the encoding of new verbal information, but has little effect on retrieval of previously stored information