Interactions between the immune system and the brain are a key element in the pathophysiology of diseases such as multiple sclerosis, neuroAIDS, and Alzheimer's, which affect large numbers of individuals and are associated with a high social cost. However, the neuroanatomical basis of brain-immune interactions has not been elucidated. We report that in Wistar rats of either sex bilateral electrolytic lesion of the medial forebrain bundle reduces body weight by 28% 7 days after lesioning, and causes widespread infections, aphagia, adypsia, structural damage to the lymphoid organs and heavy depression of T lymphocytes cytotoxicity. The following alterations occur in the immune system after those lesions: the weight of the thymus, spleen and lymphonodes is reduced by 77.9%, 49.1% and 48.4%, respectively. The thymus is atrophied and contains fewer lymphoid cells in the cortex than in the medulla. In the spleen the white pulp is reduced and lymphoid cells from periarteriolar zones and at the chords are almost absent. In lymph nodes cortical small lymphocytes are depleted and primary and secondary nodules and germinal centers all but disappear. Cytotoxicity of lymphocytes is reduced by 86.2% in the thymus, 77.6% in the spleen and 70.2% in lymph nodes. The critical area of lesion is at the medialmost portion of the medial forebrain bundle, at the preoptic area and rostral part of the anterior hypothalamus. We suggest that this area contains neural circuits that are crucial for keeping the structure of lymphoid organs and the functional integrity of the immune system.