Many teleost fishes exhibit sequential hermaphroditism, where male or female gonads develop first and later undergo sex change. Model sex change species are characterized by social hierarchies and coloration changes, which enable experimental manipulations to better understand these processes. However, other species such as the protogynous black sea bass (Centropristis striata) do not exhibit these characteristics and instead receive research attention due to their importance in fisheries or aquaculture. Black sea bass social structure is unknown, which makes sex change sampling difficult, and few molecular resources are available. The purpose of the present study was to induce sex change using exemestane, an aromatase inhibitor, and assess gonadal gene expression using sex markers (amh, zpc2) and genes involved in steroidogenesis (cyp19a1a, cyp11b), estrogen signaling (esr1, esr2b), and apoptosis or atresia (aen, casp9, fabp11, parg, pdcd4, rif1). Overall, dietary exemestane treatment was effective, and most exposed females *