Background
New daily persistent headache (NPDH) is a rare primary headache that is highly disabling. The pathophysiology of NDPH is still unclear, and we aimed to reveal the underlying mechanism of NDPH through functional magnetic resonance imaging (fMRI) analysis.
Methods
In this cross-sectional study, thirty patients with NDPH and 30 healthy controls (HCs) were recruited. The blood oxygen level-dependent (BOLD) sequences of all participants were obtained using the GE 3.0 T system. We performed ReHo, ALFF (conventional band: 0.01–0.08 Hz, slow-5: 0.01–0.027 Hz, slow-4: 0.027–0.073 Hz) and seed-based to the whole brain functional connectivity (FC) analysis in the NDPH and HC groups. The sex difference analysis of ReHo, ALFF, and FC values was conducted in the NDPH group. We also conducted Pearson’s correlation analysis between ReHo, ALFF, FC values and clinical characteristics (pain intensity, disease duration, HIT-6, GAD-7, PHQ-9, and PSQI scores).
Results
Both increased ReHo (PFWE-corr = 0.012) and ALFF values (0.01–0.08 Hz, PFWE-corr = 0.009; 0.027–0.073 Hz, PFWE-corr =0.044) of the left middle occipital gyrus (MOG_L) were found in the NDPH group compared to the HC group. There was no significant difference in FC maps between the two groups. Compared to the HC group, no difference was found in ReHo (p = 0.284), ALFF (p = 0.246), and FC (p = 0.118) z scores of the MOG_L in the NDPH group. There was also no sex difference in ReHo (p = 0.288), ALFF (p = 0.859), or FC z score (p = 0.118) of the MOG_L in patients with NDPH. There was no correlation between ReHo, ALFF, FC z scores and clinical characteristics after Bonferroni correction (p < 0.05/18).
Conclusions
Patients with NDPH may have abnormal activation of the visual system. Abnormal visual activation may occur mainly in higher frequency band of the classical band. No sex differences in brain activity were found in patients with NDPH.