Organophosphates (OPs) refers to a diverse group of phosphorus-containing organic compounds; they are widely used all over the world and have had an important beneficial impact on industrial and agricultural production and control of vector transmission. Exposure to OPs of different toxicities (high, moderate, slight, and low toxicity) can all have negative consequences on the nervous system, such as nausea, vomiting, muscle tremors, and convulsions. In severe cases, it can lead to respiratory failure or even death. Notably, OPs induce neuropathy in the nervous system through specific interactions with nicotinic or muscarinic receptors, phosphorylating acetylcholinesterase, or neuropathic target esterases. This review summarizes the possible toxicological mechanisms and their interplay underlying OP pesticide poisoning, including cholinesterase inhibition and non-cholinesterase mechanisms. It outlines the possible links between OP pesticide poisoning and neurological disorders, such as dementia, neurodevelopmental diseases, and Parkinson’s disease. Additionally, it explores OP interactions’ potential therapeutic implications that may help mitigate the deleterious impact of OPs on the nervous system.