Abstract.Oxidative stress is closely associated with the onset of diabetes mellitus (DM). Diabetic urethropathy is one of the most common complications of DM, but few studies have been conducted to investigate the role of oxidative stress in diabetic urethropathy. Grape seed proanthocyanidin extract (GSPE) has been previously reported to reduce oxidative injury. The present study aimed to investigate the role of oxidative stress and the protective effects of GSPE on urethral dysfunction using a streptozotocin-induced DM rat model. Female Wistar rats were divided into a control group (n=36), a DM group (n=36) and a DM + GSPE group (n=36). Urodynamic testing was performed using a PowerLab data acquisition device. The expression of neuronal nitric oxide synthase (nNOS), 3-nitrotyrosine and nuclear factor erythroid 2-related factor 2 (Nrf2) was determined using western blot analysis. The expression of 3-nitrotyrosine was also determined using immunohistochemistry. Nitric oxide (NO), cyclic guanosine monophosphate (cGMP), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) were measured using commercial ELISA kits. A significant increase was observed in the intravesical pressure thresholds for inducing urethral relaxation and the urethral perfusion pressure nadir in DM rats compared with the control group. GSPE was observed to reverse the increase of these parameters compared with the DM group. In addition, GSPE could reverse the downregulation of nNOS, NO and cGMP expression, and the decreased activities of antioxidant enzymes (SOD and GSH-Px). GSPE reversed the upregulation of 3-nitrotyrosine and MDA in DM rats. GSPE also activated Nrf2, which is a key antioxidative transcription factor. The findings of the present study demonstrated that GSPE protects urethra function in DM rats through modulating the NO-cGMP signaling pathway. The protective roles of GSPE may be associated with activation of the Nrf2 defense pathway.
IntroductionDiabetes mellitus (DM) refers to a group of metabolic disorders characterized by hyperglycemia, which have a severe impact on public health. To date, the majority of studies examining DM complications have focused on the pathogenesis and management of diabetic cystopathy, one of the most common complications of DM (1,2). Diabetic cystopathy is considered to be a manifestation of polyneuropathy, involving sensory and autonomic nerve fibers 1 (3). A previous study reported that DM induces damage to the innervation of the urethra, together with reduction of urethral relaxation during micturition reflex (4). DM may also induce impairment of urethral smooth muscle, which is closely associated with urethral dysfunction. However, few studies have been conducted to investigate the mechanism of urethral dysfunction in DM, so this remains unclear.Precise coordination between smooth muscle in the urethra and bladder is crucial for the balance between urine storage and bladder emptying (4). Such coordination is largely dependent on the nitric oxide (NO) released from...