Purpose: ABT-737, which blocks the function of Bcl-2 and Bcl-X L but not Mcl-1, has shown singleagent activity in preclinical models of small cell lung cancer (SCLC). Elevated expression of Mcl-1 induces resistance to ABT-737 in SCLC. Based on the short half-life of Mcl-1 mRNA and protein, we hypothesized that the actinomycin D could reverse Mcl-1-induced resistance to ABT-737.Experimental Design: The dose-response of multiple SCLC cell lines to actinomycin D in the absence and presence of ABT-737 was followed by the assessment of Bcl-2 family expression and poly ADP ribose polymerase cleavage by Western blot, viability by tetrazolium dye reduction and clonogenic assay, and cell cycle kinetics by flow cytometry.Results: Actinomycin D decreased Mcl-1 expression and resulted in a cell line-dependent increase in Noxa expression. Clinically relevant concentrations of actinomycin D from 0.4 to 4 ng/mL showed singleagent activity across a panel of SCLC cell lines. When combined with low micromolar doses of ABT-737, near complete loss of viability was seen with synergistic combination indices of 0.5 to 0.7. Exposure to 4 ng/mL actinomycin was only required for the first 24 hours of the combined incubation, mimicking a clinically achievable area under the curve, but the presence of ABT-737 was required for an additional 48 hours to obtain maximal effect.Conclusions: Clinically relevant concentrations of actinomycin D act synergistically with ABT-737 to induce SCLC apoptosis, which can be at least partially attributed to the actinomycin D-induced decrease in Mcl-1 and increase in Noxa expression. Taken together, these data suggest the feasibility of combining actinomycin D with BH3-mimetic drugs in the clinical setting. Clin Cancer Res; 16(17); 4392-400. ©2010 AACR.