“…Thereafter, however, it was shown that NF1 regulates glial cell proliferation and tumor growth in an AKT/mTORC1 dependent but TSC/RHEB independent manner [119] (Figure 1). Although only less than 10% of NF1 patients report seizures [120,121,122], several brain pathological features were frequently described in patients, such as macrocephaly [123,124] and reduced myelination [125,126], as well as in mouse models of the disorder, including larger brains [127], structural malformations [128,129,130], abnormal cerebellar neuronal migration [131,132], increased proliferation and protein synthesis in astrocytes [118,119,133], decreased neurite length [134,135], reduced dendritic spine density [136,137] and impaired LTP [138,139] (Table 1). Among those phenotypic alterations, it has been shown that rapamycin inhibited proliferation and protein synthesis in astrocytes [118,119] (Table 1), indicating that mTORC1 overactivation regulates astrocyte function in NF1 and is probably linked to glioma formation, such that pharmacological inhibition of mTORC1 suppresses tumor growth both in NF1 patients [140,141] and in mouse models [142,143].…”