To strengthen the detailed understanding of arterial stenosis, we construct a novel hemodynamic model. Frequently used symmetric stenosis is employed in this work. Being different from a traditional model, this numerical model adopts microcirculation resistance as an outlet boundary condition, which is called a seepage condition. Meanwhile, fluid-structure interactions are used in the numerical simulation considering the interrelationship of blood and arterial wall. Our results indicate that (i) the region upstream of stenosis experiences very high pressures during cardiac cycles, (ii) pressure drops much faster as the flow moves into the stenotic region, and (iii) high flow velocities and high shear stresses occur in the post-stenosis region. This work provides evidence that there is a strong effect of the function of microcirculation on stenosis. This contributes to evaluating potential stenotic behavior in arteries and is pivotal in guiding disease treatment.