IntroductionThe clinical features of Alzheimer’s disease (AD) overlap with a number of other dementias and conclusive diagnosis is only achieved at autopsy. Accurate in-life diagnosis requires finding biomarkers suitable for early diagnosis, as well as for discrimination from other types of dementia. Mounting evidence suggests that AD-dependent processes may also affect peripheral cells. We previously reported that calmodulin (CaM) signaling is impaired in AD lymphoblasts. Here, we address the issue as to whether the assessment of CaM levels in peripheral cells could serve as a diagnostic biomarker.MethodsA total of 165 subjects were enrolled in the study, including 56 AD patients, 15 patients with mild cognitive impairment, 7 with frontotemporal dementia associated with progranulin mutations, 4 with dementia with Lewy bodies, 20 patients with Parkinson’s disease, 10 with amyotrophic lateral sclerosis, 5 with progressive supranuclear palsy, and 48 cognitively normal individuals. CaM levels were then analyzed in lymphoblasts, peripheral blood mononuclear cells and plasma. Receiver operating characteristic (ROC) curve analyses were employed to evaluate the diagnostic performance of CaM content in identifying AD patients.ResultsCompared with control individuals, CaM levels were significantly increased in AD cells, but not in the other neurodegenerative disorders. CaM levels differentiated AD from control with a sensitivity of 0.89 and a specificity of 0.82 and were not dependent on disease severity or age. MCI patients also showed higher levels of the protein.ConclusionsCaM levels could be considered a peripheral biomarker for AD in its early stage and help to discriminate from other types of dementia.