Spinal cord plays a central role in the development and progression of pathogenesis of obstinate pruritus. In the current study, four groups of adult male C57Bl/6 mice were investigated; one group treated with saline, while the other groups intradermally injected with compound 48/80, histamine, α-Me-5-HT and capsaicin (algogenic substance), respectively. The intradermal microinjection of pruritic and algogenic compound resulted in a dramatic increase in the itch/algogenic behavior. Analysis of the microarray data showed that 15 genes in spinal cord (C5-C8) were differentially expressed between control group and 48/80 group, in which 9 genes were up-regulated and 6 genes were down-regulated. Furthermore, the results of RT-qPCR validation studies in C5-C8 spinal cord revealed that the 9 mRNA (Sgk1, Bag4, Fos, Ehd2, Edn3, Wdfy, Corin, 4921511E18Rik and 4930423020Rik) showed very different patterns for these different drugs, especially when comparing α-Me-5-HT and capsaicin. In three itch models, Fos and Ehd2 were up-regulated whereas Corin, 4921511E18Rik and 4930423020Rik were down-regulated. Furthermore, Corin and 4930423020Rik were down-regulated in itch model group compared to capsaicin group. Thus the application of microarray technique, coupled with RT-qPCR validation, further explain the mechanism behind itching evoked by pruritic compounds. It can contribute to our understanding of pharmacological methods for prevention or treatment of obstinate pruritus.