Background: There is increasing evidence that altered immune responses play a role in the pathogenesis of autism spectrum disorders (ASD), together with dysfunction of the serotonergic and glutamatergic systems. Since the kynurenine (KYN) pathway that degrades tryptophan (TRP) is activated in various neuroinflammatory states, we aimed to determine whether this pathway is activated in ASD. Methods: Sixty-five pediatric ASD patients (including 52 boys) were enrolled from an epidemiological survey covering 2 counties in Norway; 30 (46.5%) of these patients were diagnosed with childhood autism, 16 (24.6%) with Asperger syndrome, 12 (18.5%) with atypical autism, 1 (1.5%) with Rett syndrome, and 6 (9.2%) with other ASD. The serum levels of the following markers were measured in the children with ASD and compared to those in 30 healthy children: TRP, KYN, kynurenic acid (KA), 3-hydroxykynurenine, and quinolinic acid. Results: The mean serum level of KA was significantly lower in the ASD group than in the healthy controls (28.97 vs. 34.44 nM, p = 0.040), while the KYN/KA ratio was significantly higher in the ASD group (61.12 vs. 50.39, p = 0.006). The same relative values were found when comparing the childhood autism subgroup with the controls. Also, the mean serum level of TRP was significantly lower in children with a subdiagnosis of childhood autism than in those with Asperger syndrome (67.26 vs. 77.79 μM, p = 0.020). Conclusion: Our study indicates that there is an increased neurotoxic potential and also a possible lower KYN aminotransferase activity in ASD.