The objective of the current study was to elucidate the effect of feeding colostrum or milk-based formula on the tissue mRNA abundance of the most relevant branched-chain amino acids (BCAA) transporters and catabolizing enzymes in newborn calves. German Holstein calves were fed either colostrum (COL; n = 7) or milk-based formula (FOR; n = 7) with comparable nutrient composition but lower contents of free BCAA, insulin, and insulin-like growth factor-I in the formula than in the respective colostrum for up to 4 d of life. Tissue samples from liver, kidney fat, 3 different muscles [M. longissimus dorsi (MLD), M. semitendinosus (MST), and M. masseter (MM)], as well as duodenum, jejunum, and ileum were collected following euthanasia on d 4 at 2 h after feeding. The plasma-free BCAA were analyzed, and the tissue abundance of solute carrier family 1 member 5 (SLC1A5), SLC7A5, and SLC38A2 as well as mitochondrial isoform of branched-chain aminotransferase (BCATm), branched-chain α-keto acid dehydrogenase E1α (BCKDHA), and branchedchain α-keto acid dehydrogenase E1β (BCKDHB) were assessed. The preprandial plasma concentrations of free BCAA were affected by time but did not differ between groups. The plasma concentrations of free BCAA decreased in COL, whereas they increased in FOR after feeding, resulting in higher postprandial plasma total BCAA concentrations in FOR than in COL. The mRNA abundances of BCATm, BCKDHA, BCKDHB, as well as BCAA transporters in the liver, were not affected by the diet. In kidney fat, the mRNA abundance of BCAA catabolizing enzymes did not differ between groups, but that of SLC1A5 was lower in FOR than in COL. The mRNA abundance of BCAA catabolizing enzymes in different sections of the small intestine was not affected by the diet, whereas that of SLC7A5 was or tended to be lower in the duodenum, proximal jejunum, and mid jejunum of the COL calves compared with the FOR calves. The mRNA abundance of BCKDHA was lower in MLD and MM but greater in MS for the FOR calves compared with the COL calves. The mRNA abundance of SLC7A5 in MST was lower in FOR than in COL, whereas it was unaffected by the diet in MLD and MM. The differential effect of feeding colostrum on the mRNA abundance of BCKDHA in 3 different muscle tissues might point to a muscle typespecific response. The results also indicate that the colostral BCAA might be favorably used for anabolic metabolism in the small intestine of neonatal calves. Such effects are speculated to be due to the stimulatory effects of growth factors and hormones present in colostrum Key words: colostrum, branched-chain amino acid transporter, branched-chain amino acid enzyme, neonatal calf
Short CommunicationNeonatal calves need to adapt to extrauterine life and have to cope with energy intake shifting from a continuous maternal supply of nutrients via the placenta toward discontinuous supply via colostrum and milk or milk replacer intake (Hammon et al., 2012). Besides the supply of immunoglobulins, feeding colostrum to neonatal calves has several positive effec...