Alveolar epithelial type II cells synthesize and secrete surfactant. The surfactant-associated proteins A and D (SP-A and SP-D), members of the collectin protein family, participate in pulmonary immune defense, modulation of inflammation, and surfactant metabolism. Both proteins are known to have overlapping as well as distinct functions. The present study provides a design-based stereological analysis of adult mice deficient in both SP-A and SP-D (A Ϫ D Ϫ ) with special emphasis on parameters characterizing alveolar architecture and surfactant-producing type II cells. Compared to wild-type, A Ϫ D Ϫ mice have fewer and larger alveoli, an increase in the number and size of type II cells, as well as more numerous and larger alveolar macrophages. More surfactant-storing lamellar bodies are seen in type II cells, leading to a threefold increase in the total volume of lamellar bodies per lung, but the mean volume of a single lamellar body remains constant. These results demonstrate that chronic deficiency of SP-A and SP-D in mice leads to parenchymal remodeling, type II cell hyperplasia and hypertrophy, and disturbed intracellular surfactant metabolism. The design-based stereological approach presented here provides a framework for the quantitative lung structure analysis in gene-manipulated mice as well as in human lung disease.