Vestibular schwannoma is a common intracranial benign tumor, but the current drug treatment effect is not obvious. Surgical treatment can usually lead to residual problems such as nerve damage. Therefore, there is no clear molecular target to facilitate better clinical treatment. We analyzed three microarray data sets (GSE39645, GSE54934 and GSE108524) derived from the Gene Expression Omnibus database (GEO). The GEO2R was used to screen for the differentially expressed genes (DEG) between vestibular schwannomas and normal tissues. The ontology function of genes and genome pathway enrichment analysis were performed using annotation, visualizative and comprehensive discovery databases to identify the pathways and functional annotation of DEGs. The protein-protein interactions of these DEGs were analyzed by searching the interaction gene database and visualized by Cytoscape software. The potential therapeutic drugs for vestibular schwannoma were searched by online gene drug interaction analysis.A total of 226 up-regulated and 148 down-regulated DEGs were identified. Among them, ten hub genes with high connectivity (EGFR, PPARG, CD86, CSF1R, SPP1, CDH2, CCND1, CAV1, CYBB and NCAM1) were selected as the central genes that may be closely related to the pathogenesis of vestibular schwannoma, which can be potential treatment targets of vestibular schwannoma. Afatinib and osimerinib may be potential therapeutic drugs.