Family-based case-control design is rarely used but powerful to reduce the confounding effects of environmental factors on schizophrenia. Twenty-eight first-episode, drug-naive patients with schizophrenia, 28 family-based controls (FBC), and 40 healthy controls (HC) underwent resting-state functional MRI. Voxel-mirrored homotopic connectivity (VMHC), receiver operating characteristic curve (ROC), and support vector machine (SVM) were used to process the data. Compared with the FBC, the patients showed lower VMHC in the precuneus, fusiform gyrus/cerebellum lobule VI, and lingual gyrus/cerebellum lobule VI. The patients exhibited lower VMHC in the precuneus relative to the HC. ROC analysis exhibited that the VMHC values in these brain regions might not be ideal biomarkers to distinguish the patients from the FBC/HC. However, SVM analysis indicated that a combination of VMHC values in the precuneus and lingual gyrus/cerebellum lobule VI might be used as a potential biomarker to distinguish the patients from the FBC with a sensitivity of 96.43%, a specificity of 89.29%, and an accuracy of 92.86%. Results suggested that patients with schizophrenia have decreased homotopic connectivity in the motor and low level sensory processing regions. Neuroimaging studies can adopt family-based case-control design as a viable option to reduce the confounding effects of environmental factors on schizophrenia.