In this paper, we first present multiple numerical simulations of the anti-symmetric matrix in the stability criteria for fractional order systems (FOSs). Subsequently, this paper is devoted to the study of the admissibility criteria for descriptor fractional order systems (DFOSs) whose order belongs to (0, 2). The admissibility criteria are provided for DFOSs without eigenvalues on the boundary axes. In addition, a unified admissibility criterion for DFOSs involving the minimal linear matrix inequality (LMI) variable is provided. The results of this paper are all based on LMIs. Finally, numerical examples were provided to validate the accuracy and effectiveness of the conclusions.