For even genus $$g=2i\ge 4$$
g
=
2
i
≥
4
and the length $$g-1$$
g
-
1
partition $$\mu = (4,2,\ldots ,2,-2,\ldots ,-2)$$
μ
=
(
4
,
2
,
…
,
2
,
-
2
,
…
,
-
2
)
of 0, we compute the first coefficients of the class of $$\overline{D}(\mu )$$
D
¯
(
μ
)
in $$\mathrm {Pic}_{\mathbb {Q}}(\overline{{\mathcal {R}}}_g)$$
Pic
Q
(
R
¯
g
)
, where $$D(\mu )$$
D
(
μ
)
is the divisor consisting of pairs $$[C,\eta ]\in {\mathcal {R}}_g$$
[
C
,
η
]
∈
R
g
with $$\eta \cong {\mathcal {O}}_C(2x_1+x_2+\cdots + x_{i-1}-x_i-\cdots -x_{2i-1})$$
η
≅
O
C
(
2
x
1
+
x
2
+
⋯
+
x
i
-
1
-
x
i
-
⋯
-
x
2
i
-
1
)
for some points $$x_1,\ldots , x_{2i-1}$$
x
1
,
…
,
x
2
i
-
1
on C. We further provide several enumerative results that will be used for this computation.