Tumor-treating fields (TTFields) are a noninvasive antimitotic cancer treatment consisting of low-intensity alternating electric fields delivered to the tumor or tumor bed via externally applied transducer arrays. In multiple in vitro and in vivo cancer cell lines, TTFields therapy inhibits cell proliferation, disrupts cell division, interferes with cell migration and invasion, and reduces DNA repair. Human trials in patients with primary glioblastoma showed an improvement in overall survival, and trials in patients with unresectable malignant pleural mesothelioma showed favorable outcomes compared with historical control. This led to U.S. Food and Drug Administration approval in both clinical situations, paving the way for development of trials investigating TTFields in other malignancies. Although these trials are ongoing, the existing evidence suggests that TTFields have activity outside of neuro-oncology, and further study into the mechanism of action and clinical activity is required. In addition, because TTFields are a previously unrecognized antimitotic therapy with a unique mode of delivery, the oncological community must address obstacles to widespread patient and provider acceptance. TTFields will likely join surgery, systemic therapy, and radiation therapy as a component of multimodality management of patients with solid malignancies. The Oncologist 2019;24:e1426-e1436 Implications for Practice: Tumor-treating fields (TTFields) exhibit a broad range of antitumor activities. Clinically, they improve overall survival for patients with newly diagnosed glioblastoma. The emergence of TTFields has changed the treatment regimen for glioblastoma. Clinicians need to understand the practical issues surrounding its use in the multidisciplinary management of patients with glioblastoma. With ongoing clinical trials, TTFields likely will become another treatment modality for solid malignancies.