Changes in the respiratory rate and the contribution of the cytochrome (Cyt) c oxidase and alternative oxidase (COX and AOX, respectively) were investigated in soybean (Glycine max L. cv Stevens) root seedlings using the 18 O-discrimination method. In 4-d-old roots respiration proceeded almost entirely via COX, but by d 17 more than 50% of the flux occurred via AOX. During this period the capacity of COX, the theoretical yield of ATP synthesis, and the root relative growth rate all decreased substantially. In extracts from whole roots of different ages, the ubiquinone pool was maintained at 50% to 60% reduction, whereas pyruvate content fluctuated without a consistent trend. In whole-root immunoblots, AOX protein was largely in the reduced, active form at 7 and 17 d but was partially oxidized at 4 d. In isolated mitochondria, Cyt pathway and succinate dehydrogenase capacities and COX I protein abundance decreased with root age, whereas both AOX capacity and protein abundance remained unchanged. The amount of mitochondrial protein on a dry-mass basis did not vary significantly with root age. It is concluded that decreases in whole-root respiration during growth of soybean seedlings can be largely explained by decreases in maximal rates of electron transport via COX. Flux via AOX is increased so that the ubiquinone pool is maintained in a moderately reduced state.The rate of plant respiration is linked to the rate of metabolism and growth due to requirements for ATP, reductant, and carbon skeletons during cell maintenance, division, and expansion (Hunt and Loomis, 1979; Lambers et al., 1983). For example, respiration rates are often lower in species with intrinsically slower growth rates (Poorter et al., 1991). Moreover, respiration is rapid in tissues with high energy demands, such as thermogenic floral spadices (Meeuse, 1975), and in rapidly growing tissues, such as the elongation zone of roots (Lambers et al., 1996). Plant respiration can also increase rapidly in response to both biotic and abiotic stress (for a recent review, see Lambers et al., 1996). Conversely, decreases in respiratory rate often occur as plant tissues age (Azcon-Bieto et al., 1983; McDonnell and Farrar, 1993; Atkin and Cummins, 1994;Winkler et al., 1994). Various factors may be responsible for these changes, including substrate availability, enzyme activation, specific protein degradation or de novo protein synthesis, and alterations in mitochondrial numbers.The extent to which such changes in respiration rate alter the rate of oxidative phosphorylation also depends on the partitioning of electron flux between the Cyt and the alternative pathways of electron transport. The Cyt pathway (terminating at COX) couples the reduction of O 2 to water with the translocation of protons across the inner mitochondrial membrane, thereby building a proton-motive force that drives ATP synthesis. The alternative pathway branches directly from Q and reduces O 2 to water without further proton translocation. This pathway appears to consist of a single-s...