The sheer diversity of tapping configurations used on industrial pyrometallurgical operations is at first bewildering. They range from historical tilting furnaces without tapholes to modern eccentric bottom tapping (EBT) tilting and/or bottom slide-gate electric arc furnaces; to classical single tap-hole multiphase tapping (e.g. metal/matte and slag); to dedicated phase tap-holes (e.g. dedicated metal/matte-only and slag-only); to dedicated phase multiple tap-hole configurations (up to eight metal/matte-only tap-holes and six slag-only tap-holes); to more esoteric metal/matte-only siphons and slag overflow skimming, e.g. Mitsubishi Continuous Process (Matsutani, n.d.). This can be further complicated by periodic batch tapping; consecutive tapping on a given taphole; alternating tap-hole tapping practice; near-continuous slag-only tapping, with discrete batch matte/metal tapping on higher productivity, but low metal/matte fall (<20% by mass feed) Co and Ni ferroalloy and platinum group metal (PGM) matte furnaces; near-continuous tapping through batch tapping of individual tap-holes that are opened consecutively Post et al., 2003); to fully continuous tapping on coupled multi-furnace cascades (Matsutani, n.d.). This is largely a consequence of differing processing conditions (process temperature, superheat ( T), Prandtl number, Pr = C P /k, where = dynamic viscosity, C P = specific heat capacity and k = thermal conductivity, and resulting heat flux). But this can also be influenced strongly by industrial operating philosophy in terms of furnace design for campaign life longevity (i.e. greater capital expenditure for longer, say 20-30 years' life) versus furnace productivity (i.e. number of heats/campaigns to provide the greatest possible dilution of fixed costs per unit of commodity produced). And this may not even be consistent within a given commodity; all ironmakers (blast furnace (BF) campaign lifebased) supply downstream steelmakers (who use heat/campaign-based converters and/or electric arc furnaces).However, regardless of the specific taphole configuration or operating philosophy, owing to the addition of dynamic (often periodic) and more intense process conditions (exposure to higher temperatures leading to accelerated corrosion, greater turbulence, and elevated rates of mass and heat transfer) and higher concomitant thermomechanical forces (from thermal or flow shear stresses), furnace performance and longevity is intimately linked to tap-hole performance. The tap-hole -key to furnace performance by L.R. Nelson* and R.J. Hundermark † The critical importance of tap-hole design and management for furnace performance and longevity is explored through examining some of the specific matte, metal, and slag tapping requirements of non-ferrous copper blister and matte converting and smelting, ferroalloy smelting, and ironmaking systems. Process conditions and productivity requirements and their influence on tapping are reviewed for these different pyrometallurgical systems. Some critical aspects of the evolution ...