Word Count 222Word Count 3326
ABSTRACT
ObjectiveWe identified a novel de novo SCN2A variant (M1879T) associated with infantile-onset epilepsy that responded dramatically to sodium channel blocker antiepileptic drugs. We analyzed the functional and pharmacological consequences of this variant to establish pathogenicity, and to correlate genotype with phenotype and clinical drug response.
MethodsThe clinical and genetic features of an infant boy with epilepsy are presented. We investigated the effect of the variant using heterologously expressed recombinant human Na V 1.2 channels.We performed whole-cell patch clamp recording to determine the functional consequences and response to carbamazepine.
ResultsThe M1879T variant caused disturbances in channel inactivation including substantially depolarized voltage-dependence of inactivation, slower time course of inactivation, and enhanced resurgent current that collectively represent a gain-of-function. Carbamazepine partially normalized the voltage-dependence of inactivation and produced use-dependent block of the variant channel at high pulsing frequencies. Carbamazepine also suppresses resurgent current conducted by M1879T channels, but this effect was explained primarily by reducing the peak transient current. Molecular modeling suggests that the M1879T variant disrupts contacts with nearby residues in the C-terminal domain of the channel.
InterpretationOur study demonstrates the value of conducting functional analyses of SCN2A variants of unknown significance to establish pathogenicity and genotype-phenotype correlations. We also show concordance of in vitro pharmacology using heterologous cells with the drug response observed clinically in a case of SCN2A-associated epilepsy.
Adney, et al, page 3Adney, DeKeyser, Abramova, and Thompson declare no conflicts of interest with the work described herein.