For meeting the demands of cost and size for micronavigation system, a combined attitude determination approach with sensor fusion algorithm and intelligent Kalman filter (IKF) on low cost Micro-Electro-Mechanical System (MEMS) gyroscope, accelerometer, and magnetometer and single antenna Global Positioning System (GPS) is proposed. The effective calibration method is performed to compensate the effect of errors in low cost MEMS Inertial Measurement Unit (IMU). The different control strategies fusing the MEMS multisensors are designed. The yaw angle fusing gyroscope, accelerometer, and magnetometer algorithm is estimated accurately under GPS failure and unavailable sideslip situations. For resolving robust control and characters of the uncertain noise statistics influence, the high gain scale of IKF is adjusted by fuzzy controller in the transition process and steady state to achieve faster convergence and accurate estimation. The experiments comparing different MEMS sensors and fusion algorithms are implemented to verify the validity of the proposed approach.