Kremer, Antoine. 2017. Adaptive and plastic responses of Quercus petraea populations to climate across Europe. Global Change Biology, 23 (7). 2831-2847. 10.1111/gcb.13576 Contact CEH NORA team at noraceh@ceh.ac.ukThe NERC and CEH trademarks and logos ('the Trademarks') are registered trademarks of NERC in the UK and other countries, and may not be used without the prior written consent of the Trademark owner.
Accepted ArticleThis article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/gcb.13576 This article is protected by copyright. All rights reserved.
Accepted ArticleThis article is protected by copyright. All rights reserved.
Accepted ArticleThis article is protected by copyright. All rights reserved. †Corresponding author: E-mail: antoine.kremer@pierroton.inra.fr Phone: + (33) 5 5712-
2832.Keywords: Climatic change, Climatic transfer distance, Mixed model, Quercus petraea, Survival, Tree growth.Paper Type: Primary Research.
AbstractHow temperate forests will respond to climate change is uncertain; projections range from severe decline to increased growth. We conducted field tests of sessile oak (Quercus petraea), a widespread keystone European forest tree species, including more than 150,000 trees sourced from 116 geographically diverse populations. The tests were planted on 23 field sites in six European countries, in order to expose them to a wide range of climates, including sites reflecting future warmer and drier climates. By assessing tree height and survival, our objectives were twofold: (1) to identify the source of differential population responses to climate (genetic differentiation due to past divergent climatic selection versus plastic responses to ongoing climate change), (2) to explore which climatic variables (temperature or precipitation) trigger the population responses. Tree growth and survival were modeled for contemporary climate and then projected using data from four regional climate models for years 2071-2100, using two greenhouse gas concentration trajectory scenarios each. Overall results indicated a moderate response of tree height and survival to climate variation, with changes in dryness (either annual or during the growing season)
Accepted ArticleThis article is protected by copyright. All rights reserved.explaining the major part of the response. Whilst, on average, populations exhibited local adaptation, there was significant clinal population differentiation for height growth with winter temperature at the site of origin. The most moderate climate model (HIRHAM5-EC; rcp4.5) predicted minor decreases in height and survival, whilst the most extreme model (CCLM4-GEM2-ES; rcp8.5) predicted large decreases in survival and growth for southern and southeastern edge populations (Hungary and Turkey). Other non-marginal populations with continental climate...