In this work, a thermoset ultraviolet (UV)-cured polyurethane-acrylate resin was doped with different chemically-modified graphene obtained from a commercial graphene oxide (GO): as-received GO, chemically reduced GO (rGO), GO functionalized with vinyltriethoxysilane (VTES) (GOvtes), and GO functionalized with VTES and subsequently reduced with a chemical agent (rGOvtes). Modified graphene was introduced in the oligomer component via solvent-assisted process using acetone, which was recovered after completion of the process. Results indicate that the GO-doped oligomers produce cured coatings with improved anti-scratch resistance (above the resistance of conventional coatings), without surface defects and high transparency. The anti-scratch resistance was measured with atomic force microscopy (AFM). Additionally, results are presented in terms of Wolf–Wilburn scale, a straightforward method widely accepted and employed in the coating industry.