The most exciting advances in biohydrometallurgy are occurring in the field of microbiology. The two main technologies employed in biohydrometallurgy, agitated tanks for the processing of refractory concentrates and heaps and dumps for the processing of low-grade ores, are technologically sound and widely practised at commercial scale, but their development began at a time when very little was known of the microorganisms that assisted metals extraction from sulfide ores. During and subsequent to those developments it has been shown that microbial communities in metals extraction are more diverse than originally thought, and extremely robust and adaptable to different and variable environments. Recent advances in genomics and proteomics, exploiting hugely increased computing power and speed, have made it possible to describe not only which microorganisms are present in bioleaching systems, but also what physiological functions are being exercised. The body of knowledge being acquired through the application of molecular biology methods will be used increasingly to monitor microbial behaviour, optimise conditions for more appropriate microbiological activity and/or infer the "microbiological health" of bioreactors (tanks and heaps).