Solar energy applications rely heavily on p-block elements and transition metals. Silicon is, by far, the most commonly used material in photovoltaic cells and accounts for about 85% of modules sold presently. Of late, thin film photovoltaic cells have gained momentum because of their higher efficiencies. Most of these thin film devices are made out of just five elements, namely, cadmium, tellurium, selenium, indium, gallium and copper. The present manuscript describes an elegant and inexpensive molten salt-based electrolytic process for fabricating a tellurium-coated metallic substrate. A three-electrode set up was employed to coat iridium with tellurium from a molten bath containing lithium chloride, lithium oxide and tellurium tetrachloride (LiCl-Li2O-TeCl4) at 650 °C for a duration ranging from 30 to 120 min under a galvanostatic mode. The tellurium coating was observed to be thick, uniform, smooth and homogeneous. Additionally, the deposited tellurium did not chemically react with the iridium substrate to form intermetallic compounds, which is a good feature from the standpoint of the device’s performance characteristics. The present process, being generic in nature, shows the potential for the manufacture of both the coated substates and high-purity elements not just for tellurium but also for other p-block elements.