SARS-CoV2 is a previously uncharacterized coronavirus and causative agent of the COVID-19 pandemic. The host response to SARS-CoV2 has not yet been fully delineated, hampering a precise approach to therapy. To address this, we carried out a comprehensive analysis of gene expression data from the blood, lung, and airway of COVID-19 patients. Our results indicate that COVID-19 pathogenesis is driven by populations of myeloid-lineage cells with highly inflammatory but distinct transcriptional signatures in each compartment. The relative absence of cytotoxic cells in the lung suggests a model in which delayed clearance of the virus may permit exaggerated myeloid cell activation that contributes to disease pathogenesis by the production of inflammatory mediators. The gene expression profiles also identify potential therapeutic targets that could be modified with available drugs. The data suggest that transcriptomic profiling can provide an understanding of the pathogenesis of COVID-19 in individual patients.3 1
Methods
Read quality, trimming, mapping and summarizationPublicly available data sets used in this study are listed in Table S1. RNA-seq data were processed using a consistent workflow using FASTQC, Trimmomatic, STAR, Sambamba, and featureCounts. As described below SRA files were downloaded and converted into FASTQ format using SRA toolkit. Read ends and adapters were trimmed with Trimmomatic (v0.38) using a sliding window, ilmnclip, and headcrop filters. Both datasets were head cropped at 6bp and adapters were removed before read alignment.Reads were mapped to the human reference genome hg38 using STAR, and the .sam files were converted to sorted .bam files using Sambamba. Read counts were summarized using the featureCounts function of the Subread package (v1.61.)The RNA-seq tools are all free, open source programs available at the following web addresses SRA toolkit -https