Alzheimer's disease (AD) is a neuro-degenerative disease affecting more than 46 million people worldwide in 2015. AD is in part caused by the accumulation of A[Formula: see text] peptides inside the brain. These can aggregate to form insoluble oligomers or fibrils. Oligomers have the capacity to interact with neurons via membrane receptors such as prion proteins ([Formula: see text]). This interaction leads [Formula: see text] to be misfolded in oligomeric prion proteins ([Formula: see text]), transmitting a death signal to neurons. In the present work, we aim to describe the dynamics of A[Formula: see text] assemblies and the accumulation of toxic oligomeric species in the brain, by bringing together the fibrillation pathway of A[Formula: see text] peptides in one hand, and in the other hand A[Formula: see text] oligomerization process and their interaction with cellular prions, which has been reported to be involved in a cell-death signal transduction. The model is based on Becker-Döring equations for the polymerization process, with delayed differential equations accounting for structural rearrangement of the different reactants. We analyse the well-posedness of the model and show existence, uniqueness and non-negativity of solutions. Moreover, we demonstrate that this model admits a non-trivial steady state, which is found to be globally stable thanks to a Lyapunov function. We finally present numerical simulations and discuss the impact of model parameters on the whole dynamics, which could constitute the main targets for pharmaceutical industry.