Identifying effective treatments for Alzheimer's disease (AD) has proven challenging and has instigated a recent shift in AD research focus towards the earliest disease-initiating cellular mechanisms. A key insight has been an increase in soluble Aβ oligomers in early AD that is causally linked to neuronal and circuit hyperexcitability. However, other accumulating AD-related peptides and proteins, including those derived from the same amyloid precursor protein, such as Aη or sAPPα, and autonomously, such as tau, exhibit surprising opposing effects on circuit dynamics. We propose that the effects of these on neuronal circuits has profound implications for our understanding of disease complexity and heterogeneity, and the development of personalized diagnostic and therapeutic strategies in AD. Here, we highlight important peptide-specific mechanisms of dynamic pathological disequilibrium of cellular and circuit activity in AD and discuss approaches in which these may be further understood, and theoretically and experimentally leveraged, to elucidate AD pathophysiology.