During the last decade, research has brought forth a large amount of studies that investigated driving automation from a human factor perspective. Due to the multitude of possibilities for the study design with regard to the investigated constructs, data collection methods, and evaluated parameters, at present, the pool of findings is heterogeneous and nontransparent. This literature review applied a structured approach, where five reviewers investigated n = 161 scientific papers of relevant journals and conferences focusing on driving automation between 2010 and 2018. The aim was to present an overview of the status quo of existing methodological approaches and investigated constructs to help scientists in conducting research with established methods and advanced study setups. Results show that most studies focused on safety aspects, followed by trust and acceptance, which were mainly collected through self-report measures. Driving/Take-Over performance also marked a significant portion of the published papers; however, a wide range of different parameters were investigated by researchers. Based on our insights, we propose a set of recommendations for future studies. Amongst others, this includes validation of existing results on real roads, studying long-term effects on trust and acceptance (and of course other constructs), or triangulation of self-reported and behavioral data. We furthermore emphasize the need to establish a standardized set of parameters for recurring use cases to increase comparability. To assure a holistic contemplation of automated driving, we moreover encourage researchers to investigate other constructs that go beyond safety.