Abstract:In this short paper, we give the proof of the Ambarzumyan theorem by zeros of eigenfunctions (nodal points) different from eigenvalues for the one-dimensional p-Laplacian eigenvalue problem. We show that the potential function q(x) is zero if the spectrum is in the specific form. We consider this theorem for p-Laplacian equation with periodic and anti-periodic cases. If p = 0, results are coincided with the results given for Sturm-Liouvile problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.