CsPbIBr2, with its suitable bandgap, shows great potential as the top cell in tandem solar cells. Nonetheless, its further development is hindered by a high defect density, severe carrier recombination, and poor stability. In this study, CsPbI1.5Br1.5 quantum dots were utilized as an additive in the ethyl acetate anti-solvent, while a layer of CsPbBr3 QDs was introduced between the ETL and the CsPbIBr2 light-harvester film. The combined effect of these two QDs enhanced the nucleation, crystallization, and growth of CsPbIBr2 perovskite, yielding high-quality films characterized by an enlarged crystal size, reduced grain boundaries, and smooth surfaces. And a wider absorption range and better energy band alignment were achieved owing to the nano-size effect of QDs. These improvements led to a decreased defect density and the suppression of non-radiative recombination. Additionally, the presence of long-chain organic molecules in the QD solution promoted the formation of a hydrophobic surface, significantly enhancing the long-term stability of CsPbIBr2 PSCs. Consequently, the devices achieved a PCE of 9.20% and maintained an initial efficiency of 85% after 60 days of storage in air. Thus, this strategy proves to be an effective approach for the preparation of efficient and stable CsPbIBr2 PSCs.