Health impact assessments are useful for governmental authorities and decision-makers to determine the need for action and address potential public health problems arising from exposure to air pollution. The present study was conducted to assess the short-term health impacts of ambient air pollution in Tehran using the AirQ 2.2.3 model for March 2013-March 2016. Hourly concentrations of PM 10 , PM 2.5 , O 3 , NO 2 and SO 2 were acquired from the Department of Environment (DOE) and Tehran Air Quality Control Company (TAQCC). Air pollution data was validated according to the USEPA criteria, and only valid monitoring stations for each of the three years were entered to the AirQ 2.2.3 model. The pollutant concentrations were lower in the March 2015-March 2016 period compared to the previous years. The three-year average (± standard deviation) of PM 10 and PM 2.5 concentrations were 80.21 (± 34.21) and 39.17 (± 17.26) µg m -3 , respectively. The three-year averages (± standard deviation) for ozone (O 3 ), nitrogen dioxide (NO 2 ), and sulphur dioxide (SO 2 ) were 54.88 (± 24.15), 103.97 (± 25.88) and 39.84 (± 11.17) µg m -3 , respectively. The total estimated number of deaths attributed to PM 10 , PM 2.5 , O 3 , NO 2 and SO 2 over these three years were 4192, 4336, 1363, 2830, and 1216, respectively. The health impacts attributed to all pollutants except for PM 10 were estimated to decrease in 2016, compared to the prior years. However, the air quality in Tehran still poses significant risks to public health. In conclusion, urgent efforts are needed such as mandating the replacing of old and poorly functioning vehicles from the roadways in order to reduce the health burden that air pollution is currently imposing on this city.