Amblyopia is a common visual impairment that develops during the early years of postnatal life. It emerges as a sequela to eye misalignment, an imbalanced refractive state, or obstruction to form vision. All of these conditions prevent normal vision and derail the typical development of neural connections within the visual system. Among the subtypes of amblyopia, the most debilitating and recalcitrant to treatment is deprivation amblyopia. Nevertheless, human studies focused on advancing the standard of care for amblyopia have largely avoided recruitment of patients with this rare but severe impairment subtype. In this review, we delineate characteristics of deprivation amblyopia and underscore the critical need for new and more effective therapy. Animal models offer a unique opportunity to address this unmet need by enabling the development of unconventional and potent amblyopia therapies that cannot be pioneered in humans. Insights derived from studies using animal models are discussed as potential therapeutic innovations for the remediation of deprivation amblyopia. Retinal inactivation is highlighted as an emerging therapy that exhibits efficacy against the effects of monocular deprivation at ages when conventional therapy is ineffective, and recovery occurs without apparent detriment to the treated eye.