BACKGROUND
Analysis of circulating immune complexes (CICs) produced during an immune response may be useful in elucidating some aspects of this process. Identification of antigens incorporated into CICs provides information that may be helpful in developing diagnostic and treatment strategies for autoimmune diseases, infection, cancer, and transplantation therapy, and such information might be more relevant than information on free antigens. Because CICs may contain many antigens, comprehensive identification and profiling of such antigens is more effective than immunoblotting detection.
METHODS
We developed a novel proteomic strategy (immune complexome analysis) in which immune complexes (ICs) are separated from serum, digested directly with trypsin, and then subjected to nano-liquid chromatography–tandem mass spectrometry for identifying and profiling antigens in CICs. We applied this strategy to the analysis of CICs in 21 rheumatoid arthritis (RA) patients. Serum samples from 13 healthy donors and 8 osteoarthritis patients were used as controls.
RESULTS
CICs containing thrombospondin-1 (TSP-1) and platelet factor 4 (PF4) were found in the serum of 81% and 52% of RA patients, respectively, and in none of the controls.
CONCLUSIONS
The ICs in the serum of a majority of the RA patients contained TSP-1 or PF4, and these ICs may have potential as alternative biomarkers. Our technique for immune complexome analysis uses routine clinical samples, simple protocols, and widely available equipment. This method may be generally applicable to the study of the relationship between CICs and certain diseases associated with the immune response in animals and humans.