Nephrotic syndrome is associated with altered renal handling of water and sodium and changes in the levels of aquaporins (AQPs) and epithelial Na channels (ENaCs). The dried sclerotia of Poria cocos Wolf (WPC) have been used for treating chronic edema and nephrosis. We evaluated the effects of WPC on puromycin aminonucleoside- (PAN-) induced renal functional derangement and altered renal AQP2 and ENaC expression. In the nephrotic syndrome rat model, animals were injected with 75 mg/kg PAN and then treated with Losartan (30 mg·kg−1
·day−1) or WPC (200 mg·kg−1
·day−1) for 7 days. In the WPC group, proteinuria and ascites improved significantly. Plasma levels of triglyceride, total cholesterol, and low-density lipoprotein- (LDL-) cholesterol reduced significantly in the WPC group. In addition, the WPC group exhibited attenuation of the PAN-induced increase in AQP2 and ENaC α/β subunit protein and mRNA levels. WPC suppressed significantly PAN-induced organic osmolyte regulators, reducing serum- and glucocorticoid-inducible protein kinase (Sgk1) and sodium-myo-inositol cotransporter (SMIT) mRNA expression. Our results show that WPC improves nephrotic syndrome, including proteinuria and ascites, through inhibition of AQP2 and ENaC expression. Therefore, WPC influences body-fluid regulation via inhibition of water and sodium channels, thereby, improving renal disorders such as edema or nephrosis.