Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Let G be a locally compact group (not necessarily abelian) and B be a homogeneous Banach space on G, which is in a good situation with respect to a homogeneous function algebra on G. Feichtinger showed that there exists a minimal Banach space B min in the family of all homogenous Banach spaces C on G, containing all elements of B with compact support. In this paper, the amenability and super amenability of B min with respect to the convolution product or with respect to the pointwise product are showed to correspond to amenability, discreteness or finiteness of the group G and conversely. We also prove among other things that B min is a symmetric Segal subalgebra of L 1(G) on an IN-group G, under certain conditions, and we apply our results to study pseudo-amenability and some other homological properties of B min on IN-groups. Furthermore, we determine necessary and sufficient conditions on A under which A min $\mathcal{A}_{\min}$ with the pointwise product is an abstract Segal algebra or Segal algebra in A, whenever A is a homogeneous function algebra with an approximate identity. We apply these results to study amenability of some Feichtinger algebras with respect to the pointwise product.
Let G be a locally compact group (not necessarily abelian) and B be a homogeneous Banach space on G, which is in a good situation with respect to a homogeneous function algebra on G. Feichtinger showed that there exists a minimal Banach space B min in the family of all homogenous Banach spaces C on G, containing all elements of B with compact support. In this paper, the amenability and super amenability of B min with respect to the convolution product or with respect to the pointwise product are showed to correspond to amenability, discreteness or finiteness of the group G and conversely. We also prove among other things that B min is a symmetric Segal subalgebra of L 1(G) on an IN-group G, under certain conditions, and we apply our results to study pseudo-amenability and some other homological properties of B min on IN-groups. Furthermore, we determine necessary and sufficient conditions on A under which A min $\mathcal{A}_{\min}$ with the pointwise product is an abstract Segal algebra or Segal algebra in A, whenever A is a homogeneous function algebra with an approximate identity. We apply these results to study amenability of some Feichtinger algebras with respect to the pointwise product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.